Key Insights
The European bioplastics industry is experiencing robust growth, driven by increasing environmental concerns and stringent regulations regarding plastic waste. The market, valued at approximately €X million in 2025 (assuming a logical estimation based on the provided CAGR of 14.08% and a starting point extrapolated from the study period 2019-2024), is projected to expand significantly over the forecast period (2025-2033). Key drivers include the rising demand for sustainable packaging solutions across various sectors such as food and beverages, consumer goods, and agriculture, coupled with growing consumer awareness of environmentally friendly alternatives to conventional plastics. The flexible packaging segment currently holds a substantial market share, largely due to the widespread adoption of bio-based films and bags. However, rigid packaging applications are also witnessing a surge in demand, particularly in the food and beverage industry, where bio-based bottles and containers are gaining traction. Leading players like Arkema, BASF, and Natureworks are heavily investing in research and development to enhance the biodegradability and performance properties of bioplastics, further fueling market expansion. The strong presence of established chemical companies alongside emerging specialized bioplastics producers ensures a dynamic competitive landscape. Furthermore, government initiatives promoting sustainable materials and circular economy models are contributing to the positive growth trajectory of the European bioplastics market. The growth is further supported by innovations in bio-based materials and advancements in production technologies to bring down the cost of production.
Challenges remain, primarily centered around cost-competitiveness with conventional plastics and the need to improve the biodegradability and compostability of certain bioplastics under various conditions. Variations in bioplastic properties depending on the raw material source and processing methods pose challenges to standardization. Nevertheless, the ongoing research and development efforts focused on enhancing biodegradability, improving material properties, and expanding applications, coupled with supportive government policies, will likely mitigate these challenges and pave the way for continued significant market growth throughout the forecast period. The segmentation by product type (bio-based biodegradable, bio-based non-biodegradable, etc.) and application (flexible packaging, rigid packaging, etc.) offers several lucrative opportunities for growth within the European market, depending on regional specificities. Germany, France, and the UK are currently leading markets within Europe, with significant growth potential projected across other countries.

European Bioplastics Industry Market Report: 2019-2033
This comprehensive report provides an in-depth analysis of the European bioplastics industry, encompassing market dynamics, growth trends, key players, and future outlook. With a focus on both parent and child markets, this report is an essential resource for industry professionals, investors, and strategic decision-makers. The report covers the period 2019-2033, with a base year of 2025 and a forecast period of 2025-2033. Market values are presented in millions of units.
European Bioplastics Industry Market Dynamics & Structure
The European bioplastics market is characterized by moderate concentration, with several multinational corporations dominating alongside a growing number of specialized players. Technological innovation, driven by advancements in bio-based polymers and biodegradable materials, is a key driver. Stringent environmental regulations within the EU, promoting sustainability and waste reduction, significantly influence market growth. Competitive pressure from conventional plastics remains a challenge, while increasing consumer awareness and demand for eco-friendly alternatives are fostering market expansion. The market is witnessing significant M&A activity as larger companies seek to consolidate their presence and acquire innovative technologies.
- Market Concentration: Moderately concentrated, with top 5 players holding approximately xx% market share in 2024.
- Technological Innovation: Key drivers include PLA, PHA, and bio-PET advancements. Innovation barriers include high production costs and scalability challenges.
- Regulatory Framework: EU directives on plastics waste and circular economy are strong growth stimulants.
- Competitive Substitutes: Conventional plastics remain the major competitor, but bioplastics are gaining ground in niche applications.
- End-User Demographics: Growing demand from packaging, agriculture, and automotive sectors.
- M&A Trends: A total of xx M&A deals were recorded between 2019 and 2024, with an average deal value of xx million.
European Bioplastics Industry Growth Trends & Insights
The European bioplastics market experienced significant growth during the historical period (2019-2024), driven by increasing environmental concerns and supportive government policies. The market size reached xx million in 2024, exhibiting a CAGR of xx% during this period. Adoption rates are increasing across various applications, particularly in flexible and rigid packaging. Technological disruptions, such as advancements in bio-based polymer synthesis and improved biodegradability, are accelerating market growth. Shifting consumer preferences towards sustainable products further fuel market expansion. The forecast period (2025-2033) anticipates continued growth, with a projected CAGR of xx%, reaching xx million by 2033. Market penetration is expected to increase steadily across various segments.

Dominant Regions, Countries, or Segments in European Bioplastics Industry
Germany, France, and Italy are the leading countries in the European bioplastics market, driven by robust industrial infrastructure, supportive government initiatives, and strong demand from various sectors. Within product types, bio-based biodegradable plastics hold the largest market share, followed by bio-based non-biodegradables. In terms of applications, flexible packaging dominates due to high demand from the food and beverage industry. The rigid packaging segment is also growing rapidly, driven by increased adoption in consumer goods and medical applications.
- Leading Regions: Western Europe (Germany, France, UK) holds the largest market share due to strong regulatory support and high consumer awareness.
- Key Drivers: Stringent waste management regulations, supportive government policies, and increasing consumer demand for sustainable packaging.
- Dominant Segments: Flexible packaging is the largest application segment, followed by rigid packaging and agriculture. Bio-based biodegradable plastics segment dominates in product type.
- Growth Potential: Significant growth potential exists in automotive, construction, and textiles applications.
European Bioplastics Industry Product Landscape
The European bioplastics market offers a diverse range of products, including PLA, PHA, starch-based blends, and bio-based PET. These materials find applications across numerous sectors, demonstrating diverse performance metrics regarding biodegradability, compostability, strength, and flexibility. Key innovations focus on improving material properties, enhancing biodegradability in diverse environments, and reducing production costs. Unique selling propositions center on sustainability, eco-friendliness, and potential for reduced carbon footprint compared to conventional plastics.
Key Drivers, Barriers & Challenges in European Bioplastics Industry
Key Drivers: Increasing environmental regulations, growing consumer demand for sustainable products, advancements in bio-based polymer technology, and government support for bio-based materials.
Challenges: High production costs compared to conventional plastics, limited scalability of bio-based production, challenges in achieving consistent biodegradability across different environments, and potential supply chain disruptions in sourcing raw materials. The cost difference with conventional plastics currently impacts market penetration by approximately xx%.
Emerging Opportunities in European Bioplastics Industry
Untapped markets in construction, textiles, and electronics offer significant growth potential. Innovative applications in bio-based medical devices and biodegradable films for agriculture are emerging. Evolving consumer preferences towards sustainable and ethically sourced products create further opportunities. Focusing on specific niche applications with unique value propositions can overcome existing challenges and unlock new growth avenues.
Growth Accelerators in the European Bioplastics Industry
Technological breakthroughs, particularly in improving the biodegradability and performance of bioplastics, are crucial. Strategic partnerships between bioplastic producers, packaging companies, and retailers facilitate market expansion. Government support through tax incentives, grants, and subsidies accelerates market adoption. Expansion into new applications and markets, coupled with focused marketing efforts emphasizing the environmental and economic benefits of bioplastics, is essential for sustained growth.
Key Players Shaping the European Bioplastics Industry Market
- Arkema
- Futerro
- Solvay
- Kaneka Corporation
- Braskem
- Mitsubishi Chemical Corporation
- Maccaferri Industrial Group
- Corbion
- BASF SE
- Toray International Inc
- Trinseo
- Dow
- Novamont SpA
- Natureworks LLC
- Danimer Scientific
Notable Milestones in European Bioplastics Industry Sector
- February 2022: Carbios and Indorama Ventures announced a partnership for bio-recycled PET in France, with a processing capacity of 50,000 tons. This significantly boosts the bio-recycled PET supply chain and promotes circular economy principles within the European bioplastics sector.
In-Depth European Bioplastics Industry Market Outlook
The European bioplastics market is poised for robust growth over the forecast period, driven by continued technological advancements, expanding applications, and supportive policy environments. Strategic investments in research and development, along with collaborative partnerships across the value chain, are crucial for maximizing market potential. Focusing on cost reduction, improved scalability, and enhanced material properties will strengthen the competitiveness of bioplastics against conventional alternatives, leading to significant market expansion and capturing larger market share in diverse applications.
European Bioplastics Industry Segmentation
-
1. Product Type
-
1.1. Bio-based Biodegradables
- 1.1.1. Starch-based
- 1.1.2. Polylactic Acid (PLA)
- 1.1.3. Polyhydroxyalkanoates (PHA)
- 1.1.4. Polyester (PBS, PBAT, and PCL)
- 1.1.5. Other Bio-based Biodegradables
-
1.2. Bio-based Non-biodegradables
- 1.2.1. Bio-polyethylene Terephthalate
- 1.2.2. Bio-polyamides
- 1.2.3. Bio-polytrimethylene Terephthalate
- 1.2.4. Other Bio-based Non-biodegradables
-
1.1. Bio-based Biodegradables
-
2. Application
- 2.1. Flexible Packaging
- 2.2. Rigid Packaging
- 2.3. Automotive and Assembly Operations
- 2.4. Agriculture and Horticulture
- 2.5. Construction
- 2.6. Textiles
- 2.7. Electrical and Electronics
- 2.8. Other Applications
European Bioplastics Industry Segmentation By Geography
- 1. Germany
- 2. United Kingdom
- 3. Italy
- 4. France
- 5. Spain
- 6. Russia
- 7. Nordic Countries
- 8. Rest of Europe

European Bioplastics Industry REPORT HIGHLIGHTS
Aspects | Details |
---|---|
Study Period | 2019-2033 |
Base Year | 2024 |
Estimated Year | 2025 |
Forecast Period | 2025-2033 |
Historical Period | 2019-2024 |
Growth Rate | CAGR of 14.08% from 2019-2033 |
Segmentation |
|
Table of Contents
- 1. Introduction
- 1.1. Research Scope
- 1.2. Market Segmentation
- 1.3. Research Methodology
- 1.4. Definitions and Assumptions
- 2. Executive Summary
- 2.1. Introduction
- 3. Market Dynamics
- 3.1. Introduction
- 3.2. Market Drivers
- 3.2.1. Environmental Factors Encouraging a Paradigm Shift; Growing Demand for Bioplastics in Flexible Packaging; Other Drivers
- 3.3. Market Restrains
- 3.3.1. Availability of Cheaper Alternatives; Other Restraints
- 3.4. Market Trends
- 3.4.1. Flexible Packaging Expected to Dominate the Market
- 4. Market Factor Analysis
- 4.1. Porters Five Forces
- 4.2. Supply/Value Chain
- 4.3. PESTEL analysis
- 4.4. Market Entropy
- 4.5. Patent/Trademark Analysis
- 5. European Bioplastics Industry Analysis, Insights and Forecast, 2019-2031
- 5.1. Market Analysis, Insights and Forecast - by Product Type
- 5.1.1. Bio-based Biodegradables
- 5.1.1.1. Starch-based
- 5.1.1.2. Polylactic Acid (PLA)
- 5.1.1.3. Polyhydroxyalkanoates (PHA)
- 5.1.1.4. Polyester (PBS, PBAT, and PCL)
- 5.1.1.5. Other Bio-based Biodegradables
- 5.1.2. Bio-based Non-biodegradables
- 5.1.2.1. Bio-polyethylene Terephthalate
- 5.1.2.2. Bio-polyamides
- 5.1.2.3. Bio-polytrimethylene Terephthalate
- 5.1.2.4. Other Bio-based Non-biodegradables
- 5.1.1. Bio-based Biodegradables
- 5.2. Market Analysis, Insights and Forecast - by Application
- 5.2.1. Flexible Packaging
- 5.2.2. Rigid Packaging
- 5.2.3. Automotive and Assembly Operations
- 5.2.4. Agriculture and Horticulture
- 5.2.5. Construction
- 5.2.6. Textiles
- 5.2.7. Electrical and Electronics
- 5.2.8. Other Applications
- 5.3. Market Analysis, Insights and Forecast - by Region
- 5.3.1. Germany
- 5.3.2. United Kingdom
- 5.3.3. Italy
- 5.3.4. France
- 5.3.5. Spain
- 5.3.6. Russia
- 5.3.7. Nordic Countries
- 5.3.8. Rest of Europe
- 5.1. Market Analysis, Insights and Forecast - by Product Type
- 6. Germany European Bioplastics Industry Analysis, Insights and Forecast, 2019-2031
- 6.1. Market Analysis, Insights and Forecast - by Product Type
- 6.1.1. Bio-based Biodegradables
- 6.1.1.1. Starch-based
- 6.1.1.2. Polylactic Acid (PLA)
- 6.1.1.3. Polyhydroxyalkanoates (PHA)
- 6.1.1.4. Polyester (PBS, PBAT, and PCL)
- 6.1.1.5. Other Bio-based Biodegradables
- 6.1.2. Bio-based Non-biodegradables
- 6.1.2.1. Bio-polyethylene Terephthalate
- 6.1.2.2. Bio-polyamides
- 6.1.2.3. Bio-polytrimethylene Terephthalate
- 6.1.2.4. Other Bio-based Non-biodegradables
- 6.1.1. Bio-based Biodegradables
- 6.2. Market Analysis, Insights and Forecast - by Application
- 6.2.1. Flexible Packaging
- 6.2.2. Rigid Packaging
- 6.2.3. Automotive and Assembly Operations
- 6.2.4. Agriculture and Horticulture
- 6.2.5. Construction
- 6.2.6. Textiles
- 6.2.7. Electrical and Electronics
- 6.2.8. Other Applications
- 6.1. Market Analysis, Insights and Forecast - by Product Type
- 7. United Kingdom European Bioplastics Industry Analysis, Insights and Forecast, 2019-2031
- 7.1. Market Analysis, Insights and Forecast - by Product Type
- 7.1.1. Bio-based Biodegradables
- 7.1.1.1. Starch-based
- 7.1.1.2. Polylactic Acid (PLA)
- 7.1.1.3. Polyhydroxyalkanoates (PHA)
- 7.1.1.4. Polyester (PBS, PBAT, and PCL)
- 7.1.1.5. Other Bio-based Biodegradables
- 7.1.2. Bio-based Non-biodegradables
- 7.1.2.1. Bio-polyethylene Terephthalate
- 7.1.2.2. Bio-polyamides
- 7.1.2.3. Bio-polytrimethylene Terephthalate
- 7.1.2.4. Other Bio-based Non-biodegradables
- 7.1.1. Bio-based Biodegradables
- 7.2. Market Analysis, Insights and Forecast - by Application
- 7.2.1. Flexible Packaging
- 7.2.2. Rigid Packaging
- 7.2.3. Automotive and Assembly Operations
- 7.2.4. Agriculture and Horticulture
- 7.2.5. Construction
- 7.2.6. Textiles
- 7.2.7. Electrical and Electronics
- 7.2.8. Other Applications
- 7.1. Market Analysis, Insights and Forecast - by Product Type
- 8. Italy European Bioplastics Industry Analysis, Insights and Forecast, 2019-2031
- 8.1. Market Analysis, Insights and Forecast - by Product Type
- 8.1.1. Bio-based Biodegradables
- 8.1.1.1. Starch-based
- 8.1.1.2. Polylactic Acid (PLA)
- 8.1.1.3. Polyhydroxyalkanoates (PHA)
- 8.1.1.4. Polyester (PBS, PBAT, and PCL)
- 8.1.1.5. Other Bio-based Biodegradables
- 8.1.2. Bio-based Non-biodegradables
- 8.1.2.1. Bio-polyethylene Terephthalate
- 8.1.2.2. Bio-polyamides
- 8.1.2.3. Bio-polytrimethylene Terephthalate
- 8.1.2.4. Other Bio-based Non-biodegradables
- 8.1.1. Bio-based Biodegradables
- 8.2. Market Analysis, Insights and Forecast - by Application
- 8.2.1. Flexible Packaging
- 8.2.2. Rigid Packaging
- 8.2.3. Automotive and Assembly Operations
- 8.2.4. Agriculture and Horticulture
- 8.2.5. Construction
- 8.2.6. Textiles
- 8.2.7. Electrical and Electronics
- 8.2.8. Other Applications
- 8.1. Market Analysis, Insights and Forecast - by Product Type
- 9. France European Bioplastics Industry Analysis, Insights and Forecast, 2019-2031
- 9.1. Market Analysis, Insights and Forecast - by Product Type
- 9.1.1. Bio-based Biodegradables
- 9.1.1.1. Starch-based
- 9.1.1.2. Polylactic Acid (PLA)
- 9.1.1.3. Polyhydroxyalkanoates (PHA)
- 9.1.1.4. Polyester (PBS, PBAT, and PCL)
- 9.1.1.5. Other Bio-based Biodegradables
- 9.1.2. Bio-based Non-biodegradables
- 9.1.2.1. Bio-polyethylene Terephthalate
- 9.1.2.2. Bio-polyamides
- 9.1.2.3. Bio-polytrimethylene Terephthalate
- 9.1.2.4. Other Bio-based Non-biodegradables
- 9.1.1. Bio-based Biodegradables
- 9.2. Market Analysis, Insights and Forecast - by Application
- 9.2.1. Flexible Packaging
- 9.2.2. Rigid Packaging
- 9.2.3. Automotive and Assembly Operations
- 9.2.4. Agriculture and Horticulture
- 9.2.5. Construction
- 9.2.6. Textiles
- 9.2.7. Electrical and Electronics
- 9.2.8. Other Applications
- 9.1. Market Analysis, Insights and Forecast - by Product Type
- 10. Spain European Bioplastics Industry Analysis, Insights and Forecast, 2019-2031
- 10.1. Market Analysis, Insights and Forecast - by Product Type
- 10.1.1. Bio-based Biodegradables
- 10.1.1.1. Starch-based
- 10.1.1.2. Polylactic Acid (PLA)
- 10.1.1.3. Polyhydroxyalkanoates (PHA)
- 10.1.1.4. Polyester (PBS, PBAT, and PCL)
- 10.1.1.5. Other Bio-based Biodegradables
- 10.1.2. Bio-based Non-biodegradables
- 10.1.2.1. Bio-polyethylene Terephthalate
- 10.1.2.2. Bio-polyamides
- 10.1.2.3. Bio-polytrimethylene Terephthalate
- 10.1.2.4. Other Bio-based Non-biodegradables
- 10.1.1. Bio-based Biodegradables
- 10.2. Market Analysis, Insights and Forecast - by Application
- 10.2.1. Flexible Packaging
- 10.2.2. Rigid Packaging
- 10.2.3. Automotive and Assembly Operations
- 10.2.4. Agriculture and Horticulture
- 10.2.5. Construction
- 10.2.6. Textiles
- 10.2.7. Electrical and Electronics
- 10.2.8. Other Applications
- 10.1. Market Analysis, Insights and Forecast - by Product Type
- 11. Russia European Bioplastics Industry Analysis, Insights and Forecast, 2019-2031
- 11.1. Market Analysis, Insights and Forecast - by Product Type
- 11.1.1. Bio-based Biodegradables
- 11.1.1.1. Starch-based
- 11.1.1.2. Polylactic Acid (PLA)
- 11.1.1.3. Polyhydroxyalkanoates (PHA)
- 11.1.1.4. Polyester (PBS, PBAT, and PCL)
- 11.1.1.5. Other Bio-based Biodegradables
- 11.1.2. Bio-based Non-biodegradables
- 11.1.2.1. Bio-polyethylene Terephthalate
- 11.1.2.2. Bio-polyamides
- 11.1.2.3. Bio-polytrimethylene Terephthalate
- 11.1.2.4. Other Bio-based Non-biodegradables
- 11.1.1. Bio-based Biodegradables
- 11.2. Market Analysis, Insights and Forecast - by Application
- 11.2.1. Flexible Packaging
- 11.2.2. Rigid Packaging
- 11.2.3. Automotive and Assembly Operations
- 11.2.4. Agriculture and Horticulture
- 11.2.5. Construction
- 11.2.6. Textiles
- 11.2.7. Electrical and Electronics
- 11.2.8. Other Applications
- 11.1. Market Analysis, Insights and Forecast - by Product Type
- 12. Nordic Countries European Bioplastics Industry Analysis, Insights and Forecast, 2019-2031
- 12.1. Market Analysis, Insights and Forecast - by Product Type
- 12.1.1. Bio-based Biodegradables
- 12.1.1.1. Starch-based
- 12.1.1.2. Polylactic Acid (PLA)
- 12.1.1.3. Polyhydroxyalkanoates (PHA)
- 12.1.1.4. Polyester (PBS, PBAT, and PCL)
- 12.1.1.5. Other Bio-based Biodegradables
- 12.1.2. Bio-based Non-biodegradables
- 12.1.2.1. Bio-polyethylene Terephthalate
- 12.1.2.2. Bio-polyamides
- 12.1.2.3. Bio-polytrimethylene Terephthalate
- 12.1.2.4. Other Bio-based Non-biodegradables
- 12.1.1. Bio-based Biodegradables
- 12.2. Market Analysis, Insights and Forecast - by Application
- 12.2.1. Flexible Packaging
- 12.2.2. Rigid Packaging
- 12.2.3. Automotive and Assembly Operations
- 12.2.4. Agriculture and Horticulture
- 12.2.5. Construction
- 12.2.6. Textiles
- 12.2.7. Electrical and Electronics
- 12.2.8. Other Applications
- 12.1. Market Analysis, Insights and Forecast - by Product Type
- 13. Rest of Europe European Bioplastics Industry Analysis, Insights and Forecast, 2019-2031
- 13.1. Market Analysis, Insights and Forecast - by Product Type
- 13.1.1. Bio-based Biodegradables
- 13.1.1.1. Starch-based
- 13.1.1.2. Polylactic Acid (PLA)
- 13.1.1.3. Polyhydroxyalkanoates (PHA)
- 13.1.1.4. Polyester (PBS, PBAT, and PCL)
- 13.1.1.5. Other Bio-based Biodegradables
- 13.1.2. Bio-based Non-biodegradables
- 13.1.2.1. Bio-polyethylene Terephthalate
- 13.1.2.2. Bio-polyamides
- 13.1.2.3. Bio-polytrimethylene Terephthalate
- 13.1.2.4. Other Bio-based Non-biodegradables
- 13.1.1. Bio-based Biodegradables
- 13.2. Market Analysis, Insights and Forecast - by Application
- 13.2.1. Flexible Packaging
- 13.2.2. Rigid Packaging
- 13.2.3. Automotive and Assembly Operations
- 13.2.4. Agriculture and Horticulture
- 13.2.5. Construction
- 13.2.6. Textiles
- 13.2.7. Electrical and Electronics
- 13.2.8. Other Applications
- 13.1. Market Analysis, Insights and Forecast - by Product Type
- 14. Germany European Bioplastics Industry Analysis, Insights and Forecast, 2019-2031
- 15. France European Bioplastics Industry Analysis, Insights and Forecast, 2019-2031
- 16. Italy European Bioplastics Industry Analysis, Insights and Forecast, 2019-2031
- 17. United Kingdom European Bioplastics Industry Analysis, Insights and Forecast, 2019-2031
- 18. Spain European Bioplastics Industry Analysis, Insights and Forecast, 2019-2031
- 19. Rest of Europe European Bioplastics Industry Analysis, Insights and Forecast, 2019-2031
- 20. Competitive Analysis
- 20.1. Market Share Analysis 2024
- 20.2. Company Profiles
- 20.2.1 Arkema
- 20.2.1.1. Overview
- 20.2.1.2. Products
- 20.2.1.3. SWOT Analysis
- 20.2.1.4. Recent Developments
- 20.2.1.5. Financials (Based on Availability)
- 20.2.2 Futerro
- 20.2.2.1. Overview
- 20.2.2.2. Products
- 20.2.2.3. SWOT Analysis
- 20.2.2.4. Recent Developments
- 20.2.2.5. Financials (Based on Availability)
- 20.2.3 Solvay
- 20.2.3.1. Overview
- 20.2.3.2. Products
- 20.2.3.3. SWOT Analysis
- 20.2.3.4. Recent Developments
- 20.2.3.5. Financials (Based on Availability)
- 20.2.4 Kaneka Corporation
- 20.2.4.1. Overview
- 20.2.4.2. Products
- 20.2.4.3. SWOT Analysis
- 20.2.4.4. Recent Developments
- 20.2.4.5. Financials (Based on Availability)
- 20.2.5 Braskem
- 20.2.5.1. Overview
- 20.2.5.2. Products
- 20.2.5.3. SWOT Analysis
- 20.2.5.4. Recent Developments
- 20.2.5.5. Financials (Based on Availability)
- 20.2.6 Mitsubishi Chemical Corporation
- 20.2.6.1. Overview
- 20.2.6.2. Products
- 20.2.6.3. SWOT Analysis
- 20.2.6.4. Recent Developments
- 20.2.6.5. Financials (Based on Availability)
- 20.2.7 Maccaferri Industrial Group
- 20.2.7.1. Overview
- 20.2.7.2. Products
- 20.2.7.3. SWOT Analysis
- 20.2.7.4. Recent Developments
- 20.2.7.5. Financials (Based on Availability)
- 20.2.8 Corbion
- 20.2.8.1. Overview
- 20.2.8.2. Products
- 20.2.8.3. SWOT Analysis
- 20.2.8.4. Recent Developments
- 20.2.8.5. Financials (Based on Availability)
- 20.2.9 BASF SE
- 20.2.9.1. Overview
- 20.2.9.2. Products
- 20.2.9.3. SWOT Analysis
- 20.2.9.4. Recent Developments
- 20.2.9.5. Financials (Based on Availability)
- 20.2.10 Toray International Inc
- 20.2.10.1. Overview
- 20.2.10.2. Products
- 20.2.10.3. SWOT Analysis
- 20.2.10.4. Recent Developments
- 20.2.10.5. Financials (Based on Availability)
- 20.2.11 Trinseo
- 20.2.11.1. Overview
- 20.2.11.2. Products
- 20.2.11.3. SWOT Analysis
- 20.2.11.4. Recent Developments
- 20.2.11.5. Financials (Based on Availability)
- 20.2.12 Dow
- 20.2.12.1. Overview
- 20.2.12.2. Products
- 20.2.12.3. SWOT Analysis
- 20.2.12.4. Recent Developments
- 20.2.12.5. Financials (Based on Availability)
- 20.2.13 Novamont SpA
- 20.2.13.1. Overview
- 20.2.13.2. Products
- 20.2.13.3. SWOT Analysis
- 20.2.13.4. Recent Developments
- 20.2.13.5. Financials (Based on Availability)
- 20.2.14 Natureworks LLC
- 20.2.14.1. Overview
- 20.2.14.2. Products
- 20.2.14.3. SWOT Analysis
- 20.2.14.4. Recent Developments
- 20.2.14.5. Financials (Based on Availability)
- 20.2.15 Danimer Scientific
- 20.2.15.1. Overview
- 20.2.15.2. Products
- 20.2.15.3. SWOT Analysis
- 20.2.15.4. Recent Developments
- 20.2.15.5. Financials (Based on Availability)
- 20.2.1 Arkema
List of Figures
- Figure 1: European Bioplastics Industry Revenue Breakdown (Million, %) by Product 2024 & 2032
- Figure 2: European Bioplastics Industry Share (%) by Company 2024
List of Tables
- Table 1: European Bioplastics Industry Revenue Million Forecast, by Region 2019 & 2032
- Table 2: European Bioplastics Industry Volume K Tons Forecast, by Region 2019 & 2032
- Table 3: European Bioplastics Industry Revenue Million Forecast, by Product Type 2019 & 2032
- Table 4: European Bioplastics Industry Volume K Tons Forecast, by Product Type 2019 & 2032
- Table 5: European Bioplastics Industry Revenue Million Forecast, by Application 2019 & 2032
- Table 6: European Bioplastics Industry Volume K Tons Forecast, by Application 2019 & 2032
- Table 7: European Bioplastics Industry Revenue Million Forecast, by Region 2019 & 2032
- Table 8: European Bioplastics Industry Volume K Tons Forecast, by Region 2019 & 2032
- Table 9: European Bioplastics Industry Revenue Million Forecast, by Country 2019 & 2032
- Table 10: European Bioplastics Industry Volume K Tons Forecast, by Country 2019 & 2032
- Table 11: Germany European Bioplastics Industry Revenue (Million) Forecast, by Application 2019 & 2032
- Table 12: Germany European Bioplastics Industry Volume (K Tons) Forecast, by Application 2019 & 2032
- Table 13: France European Bioplastics Industry Revenue (Million) Forecast, by Application 2019 & 2032
- Table 14: France European Bioplastics Industry Volume (K Tons) Forecast, by Application 2019 & 2032
- Table 15: Italy European Bioplastics Industry Revenue (Million) Forecast, by Application 2019 & 2032
- Table 16: Italy European Bioplastics Industry Volume (K Tons) Forecast, by Application 2019 & 2032
- Table 17: United Kingdom European Bioplastics Industry Revenue (Million) Forecast, by Application 2019 & 2032
- Table 18: United Kingdom European Bioplastics Industry Volume (K Tons) Forecast, by Application 2019 & 2032
- Table 19: Spain European Bioplastics Industry Revenue (Million) Forecast, by Application 2019 & 2032
- Table 20: Spain European Bioplastics Industry Volume (K Tons) Forecast, by Application 2019 & 2032
- Table 21: Rest of Europe European Bioplastics Industry Revenue (Million) Forecast, by Application 2019 & 2032
- Table 22: Rest of Europe European Bioplastics Industry Volume (K Tons) Forecast, by Application 2019 & 2032
- Table 23: European Bioplastics Industry Revenue Million Forecast, by Product Type 2019 & 2032
- Table 24: European Bioplastics Industry Volume K Tons Forecast, by Product Type 2019 & 2032
- Table 25: European Bioplastics Industry Revenue Million Forecast, by Application 2019 & 2032
- Table 26: European Bioplastics Industry Volume K Tons Forecast, by Application 2019 & 2032
- Table 27: European Bioplastics Industry Revenue Million Forecast, by Country 2019 & 2032
- Table 28: European Bioplastics Industry Volume K Tons Forecast, by Country 2019 & 2032
- Table 29: European Bioplastics Industry Revenue Million Forecast, by Product Type 2019 & 2032
- Table 30: European Bioplastics Industry Volume K Tons Forecast, by Product Type 2019 & 2032
- Table 31: European Bioplastics Industry Revenue Million Forecast, by Application 2019 & 2032
- Table 32: European Bioplastics Industry Volume K Tons Forecast, by Application 2019 & 2032
- Table 33: European Bioplastics Industry Revenue Million Forecast, by Country 2019 & 2032
- Table 34: European Bioplastics Industry Volume K Tons Forecast, by Country 2019 & 2032
- Table 35: European Bioplastics Industry Revenue Million Forecast, by Product Type 2019 & 2032
- Table 36: European Bioplastics Industry Volume K Tons Forecast, by Product Type 2019 & 2032
- Table 37: European Bioplastics Industry Revenue Million Forecast, by Application 2019 & 2032
- Table 38: European Bioplastics Industry Volume K Tons Forecast, by Application 2019 & 2032
- Table 39: European Bioplastics Industry Revenue Million Forecast, by Country 2019 & 2032
- Table 40: European Bioplastics Industry Volume K Tons Forecast, by Country 2019 & 2032
- Table 41: European Bioplastics Industry Revenue Million Forecast, by Product Type 2019 & 2032
- Table 42: European Bioplastics Industry Volume K Tons Forecast, by Product Type 2019 & 2032
- Table 43: European Bioplastics Industry Revenue Million Forecast, by Application 2019 & 2032
- Table 44: European Bioplastics Industry Volume K Tons Forecast, by Application 2019 & 2032
- Table 45: European Bioplastics Industry Revenue Million Forecast, by Country 2019 & 2032
- Table 46: European Bioplastics Industry Volume K Tons Forecast, by Country 2019 & 2032
- Table 47: European Bioplastics Industry Revenue Million Forecast, by Product Type 2019 & 2032
- Table 48: European Bioplastics Industry Volume K Tons Forecast, by Product Type 2019 & 2032
- Table 49: European Bioplastics Industry Revenue Million Forecast, by Application 2019 & 2032
- Table 50: European Bioplastics Industry Volume K Tons Forecast, by Application 2019 & 2032
- Table 51: European Bioplastics Industry Revenue Million Forecast, by Country 2019 & 2032
- Table 52: European Bioplastics Industry Volume K Tons Forecast, by Country 2019 & 2032
- Table 53: European Bioplastics Industry Revenue Million Forecast, by Product Type 2019 & 2032
- Table 54: European Bioplastics Industry Volume K Tons Forecast, by Product Type 2019 & 2032
- Table 55: European Bioplastics Industry Revenue Million Forecast, by Application 2019 & 2032
- Table 56: European Bioplastics Industry Volume K Tons Forecast, by Application 2019 & 2032
- Table 57: European Bioplastics Industry Revenue Million Forecast, by Country 2019 & 2032
- Table 58: European Bioplastics Industry Volume K Tons Forecast, by Country 2019 & 2032
- Table 59: European Bioplastics Industry Revenue Million Forecast, by Product Type 2019 & 2032
- Table 60: European Bioplastics Industry Volume K Tons Forecast, by Product Type 2019 & 2032
- Table 61: European Bioplastics Industry Revenue Million Forecast, by Application 2019 & 2032
- Table 62: European Bioplastics Industry Volume K Tons Forecast, by Application 2019 & 2032
- Table 63: European Bioplastics Industry Revenue Million Forecast, by Country 2019 & 2032
- Table 64: European Bioplastics Industry Volume K Tons Forecast, by Country 2019 & 2032
- Table 65: European Bioplastics Industry Revenue Million Forecast, by Product Type 2019 & 2032
- Table 66: European Bioplastics Industry Volume K Tons Forecast, by Product Type 2019 & 2032
- Table 67: European Bioplastics Industry Revenue Million Forecast, by Application 2019 & 2032
- Table 68: European Bioplastics Industry Volume K Tons Forecast, by Application 2019 & 2032
- Table 69: European Bioplastics Industry Revenue Million Forecast, by Country 2019 & 2032
- Table 70: European Bioplastics Industry Volume K Tons Forecast, by Country 2019 & 2032
Frequently Asked Questions
1. What is the projected Compound Annual Growth Rate (CAGR) of the European Bioplastics Industry?
The projected CAGR is approximately 14.08%.
2. Which companies are prominent players in the European Bioplastics Industry?
Key companies in the market include Arkema, Futerro, Solvay, Kaneka Corporation, Braskem, Mitsubishi Chemical Corporation, Maccaferri Industrial Group, Corbion, BASF SE, Toray International Inc, Trinseo, Dow, Novamont SpA, Natureworks LLC, Danimer Scientific.
3. What are the main segments of the European Bioplastics Industry?
The market segments include Product Type, Application.
4. Can you provide details about the market size?
The market size is estimated to be USD XX Million as of 2022.
5. What are some drivers contributing to market growth?
Environmental Factors Encouraging a Paradigm Shift; Growing Demand for Bioplastics in Flexible Packaging; Other Drivers.
6. What are the notable trends driving market growth?
Flexible Packaging Expected to Dominate the Market.
7. Are there any restraints impacting market growth?
Availability of Cheaper Alternatives; Other Restraints.
8. Can you provide examples of recent developments in the market?
February 2022: Carbios and Indorama Ventures announced their partnership for bio-recycled PET in France with a processing capacity estimated at 50,000 tons.
9. What pricing options are available for accessing the report?
Pricing options include single-user, multi-user, and enterprise licenses priced at USD 4750, USD 5250, and USD 8750 respectively.
10. Is the market size provided in terms of value or volume?
The market size is provided in terms of value, measured in Million and volume, measured in K Tons.
11. Are there any specific market keywords associated with the report?
Yes, the market keyword associated with the report is "European Bioplastics Industry," which aids in identifying and referencing the specific market segment covered.
12. How do I determine which pricing option suits my needs best?
The pricing options vary based on user requirements and access needs. Individual users may opt for single-user licenses, while businesses requiring broader access may choose multi-user or enterprise licenses for cost-effective access to the report.
13. Are there any additional resources or data provided in the European Bioplastics Industry report?
While the report offers comprehensive insights, it's advisable to review the specific contents or supplementary materials provided to ascertain if additional resources or data are available.
14. How can I stay updated on further developments or reports in the European Bioplastics Industry?
To stay informed about further developments, trends, and reports in the European Bioplastics Industry, consider subscribing to industry newsletters, following relevant companies and organizations, or regularly checking reputable industry news sources and publications.
Methodology
Step 1 - Identification of Relevant Samples Size from Population Database



Step 2 - Approaches for Defining Global Market Size (Value, Volume* & Price*)

Note*: In applicable scenarios
Step 3 - Data Sources
Primary Research
- Web Analytics
- Survey Reports
- Research Institute
- Latest Research Reports
- Opinion Leaders
Secondary Research
- Annual Reports
- White Paper
- Latest Press Release
- Industry Association
- Paid Database
- Investor Presentations

Step 4 - Data Triangulation
Involves using different sources of information in order to increase the validity of a study
These sources are likely to be stakeholders in a program - participants, other researchers, program staff, other community members, and so on.
Then we put all data in single framework & apply various statistical tools to find out the dynamic on the market.
During the analysis stage, feedback from the stakeholder groups would be compared to determine areas of agreement as well as areas of divergence